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Barley SIX-ROWED SPIKE3 encodes a putative
Jumonji C-type H3K9me2/me3 demethylase that
represses lateral spikelet fertility
Hazel Bull1,2, M. Cristina Casao2, Monika Zwirek2, Andrew J. Flavell3, William T.B. Thomas2, Wenbin Guo3,4,

Runxuan Zhang4, Paulo Rapazote-Flores4, Stylianos Kyriakidis3, Joanne Russell2, Arnis Druka2,

Sarah M. McKim3 & Robbie Waugh 2,3

The barley inflorescence (spike) comprises a multi-noded central stalk (rachis) with tri-

partite clusters of uni-floretted spikelets attached alternately along its length. Relative fertility

of lateral spikelets within each cluster leads to spikes with two or six rows of grain, or an

intermediate morphology. Understanding the mechanisms controlling this key developmental

step could provide novel solutions to enhanced grain yield. Classical genetic studies identified

five major SIX-ROWED SPIKE (VRS) genes, with four now known to encode transcription

factors. Here we identify and characterise the remaining major VRS gene, VRS3, as encoding a

putative Jumonji C-type H3K9me2/me3 demethylase, a regulator of chromatin state.

Exploring the expression network modulated by VRS3 reveals specific interactions, both with

other VRS genes and genes involved in stress, hormone and sugar metabolism. We show that

combining a vrs3 mutant allele with natural six-rowed alleles of VRS1 and VRS5 leads to

increased lateral grain size and greater grain uniformity.
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A ll wild barleys have two-rowed spikes with each rachis
node bearing a single grain from a fertile central spikelet
flanked by two sterile lateral spikelets. Six-rowed types,

where both central and lateral spikelets bear grain, arose post-
domestication some 12,000–8000 years before present through
selection of spontaneous recessive six-rowed variants. Despite the
potential to produce up to three times as many grain per spike, a
commensurate reduction in spike-bearing stems (tillers) per plant
and smaller lateral grain size ultimately results in comparable
yields between both morphological types1 (https://cereals.ahdb.
org.uk/varieties/ahdb-recommended-lists/winter-barley-201718.
aspx). Extensive classical genetic studies have identified up to 11
independent loci (variously called HEXASTICHON (HEX), SIX-
ROWED SPIKE (VRS) and INTERMEDIUM (INT)) associated
with complete or partial changes in the fertility of the lateral
spikelets2. Of the characterised row-type genes, VRS1 (syn.
HvHOX1) encodes a basic helix-loop-helix (bHLH) transcrip-
tional activator3, 4 that inhibits the development of fertile lateral
spikelets. Mutations in VRS1 alone are both necessary and suf-
ficient to generate a full six-rowed phenotype, leading to VRS1
being considered the key molecular gatekeeper in the control of
lateral spikelet fertility. VRS25, VRS46 and VRS5/INT-C7 encode
homologues of SHORT INTERNODES (SHI)8, LATERAL
ORGAN BOUNDARY (LOB)9 and TEOSINTE BRANCHED1/
CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN
FACTOR 1 (TB1)10 transcription factors, respectively, whose
functions appear partially conserved. Recessive mutant alleles
exhibit varying degrees of six-rowed phenotypic penetrance and
cause so-called intermedium phenotypes. The genetic data indi-
cate that alleles of VRS1 and VRS5 are epistatic7, and expression

analyses suggest that VRS4 acts early to promote VRS1
expression6.

Here we show that the remaining unidentified major VRS gene,
VRS3, encodes a putative Jumonji C-type (JMJC) H3K9me2/me3
demethylase whose loss of function is associated with gains in
lateral spikelet fertility. Deep gene expression analyses revealed
that VRS3 promotes expression of all other VRS genes through-
out spikelet development, and that VRS3 function modulates
networks associated with sugar and hormone metabolism, and
stress signalling. Although natural VRS3 alleles are not strictly
associated with row-type, combining mutant vrs3 alleles with
natural six-rowed VRS1 (vrs1.a) and VRS5 (Int-c.a) alleles results
in increased lateral grain size and uniformity.

Results
vrs3 mutants show gains in lateral spikelet fertility. Mutants of
VRS3 (vrs3 syn. int-a) in a two-rowed cv. Bowman background
(BW419, int-a *BC6) typically show two-rowed architecture in
the lower portion of the spike and six-rowed architecture in the
upper part (Fig. 1a, b). Lateral spikelet fertility appears coincident
with the development of awns on the lateral spikelets (Fig. 1c–e
and Supplementary Note 1). Penetrance of these characteristics is
environmentally and genetically sensitive, and can be accom-
panied by supplementary florets, spikelets and ectopic awns on
the palea (Fig. 1f–h and Supplementary Note 1). Bowman and a
second near isogenic line (NIL), BW902(vrs3.f *BC6)11, show
striking differences in early lateral spikelet development. When
Bowman spikes are 2–3 mm long (late lemma primordium stage),
the appearance and elongation of awn initials on the central
spikelet marks the beginning of the awn primordium (AP) stage
and the end of lateral spikelet development, with the laterals
subsequently remaining small and undifferentiated (Fig. 1i, j). At
the same developmental stage, BW902(vrs3.f) lateral spikelets
clearly increase in size with enlarged lemmas enclosing differ-
entiating floral organs (Fig. 1j). Despite these differences in
inflorescence morphology, no significant difference in days to
spike emergence was observed in individuals from F2 populations
segregating for mutant/wild-type alleles at the vrs3 locus.

VRS3 encodes a putative JMJC H3K9me2/3 demethylase.
Genetic analyses of the two NILs carrying independent vrs3
mutations (BW419(int-a.1) and BW902(vrs3.f)) located VRS3 on
the short arm of chromosome 1H11. We mapped vrs3 in an
F2 segregating population (BW419(int-a.1)*Barke) to a 10.9 cM
interval using a 384 SNP Illumina BeadXpress genotyping plat-
form and then systematically refined this interval genetically
using additional SNP markers to a 2.2 cM interval containing 22
gene models12, 13 that exhibited conserved synteny with an
orthologous region on rice chromosome 10 (Fig. 2a, b and Sup-
plementary Table 1). Within this interval lies the rice gene
LOC_OS10g42690, encoding a JMJC H3K9me2/3 demethylase,
which when mutated, perturbs rice inflorescence morphology14.
Sequence-based phylogeny (Supplementary Note 1 and Supple-
mentary Fig. 1) suggested that HvJMJ706 was a likely functional
orthologue of OsJMJ706 and therefore a promising candidate for
VRS3. In support of this hypothesis, sequencing HvJMJ706 in
BW419(int-a.1) and BW902(vrs3.f) revealed frameshift mutations
within conserved C5HC2 zinc finger and JmjN functional
domains, respectively, suggesting that sequence changes in
HvJMJ706 may represent vrs3 loss of function alleles. We con-
firmed the identity of HvJMJ706 as VRS3 by sequencing a further
thirty-two row-type mutants, generated using different mutagens
and previously shown to be alleles of vrs3 by genetic com-
plementation15. Thirty-one alleles contained disruptive lesions in
HvJMJ706 (26 independent; Fig. 2c). The vrs3.f allele produced
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Fig. 1 The vrs3 phenotype. a Spike of the two-rowed cv. Bowman. b Spike of
the vrs3 NIL BW419(int-a.1). Scale bar in a applies to b, 1 cm. c Bowman
spikelet triplet with fertile central and infertile lateral spikelets. d–h Spikelet
triplets from a homozygous vrs3 individual from the BW419(int-a.1)
*Bowman F2 population. d Six-rowed spikelet triplet. e Spikelet triplet with
fertile central spikelet and infertile, pointed lateral spikelets. f–h Spikelet
triplet with additional fertile spikelets and awned palea. g Adaxial and h
abaxial views of the same spikelet triplet showing the formation of
additional florets within the central spikelet. Scale bar in c applies to d–h, 1
cm. i, j Scanning electron microscopy of developing spikes of i Bowman and
j vrs3 NIL BW902(vrs3.f). Developing lemmas are highlighted in pink,
anthers in green and glumes in yellow. Scale bar in i applies to j, 500 µm
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the most truncated protein and the most severe phenotype. An
analysis of growth and development of the mutant allelic series
revealed that the phenotypic penetrance of vrs3 was influenced by
both genetic background and environment. We observed that
genetically distinct lines possessing identical non-synonymous
substitutions (int-a.27 (Foma), int-a.71 (Bonus) and int-a.54
(Kristina)), segregating progenies from bi-parental mapping
crosses and the same lines grown in the field or glasshouse displayed
variable inflorescence phenotypes (Supplementary Note 1).

Two major VRS3 haplotypes exist in European germplasm. To
assess whether natural alleles of VRS3 were associated with the
different spike row-types, as demonstrated previously for VRS1
and VRS53, 7, 16, we sequenced VRS3 across 22 representative
two-rowed and six-rowed, winter and spring planted European
cultivars, resolving two major haplotypes, Vrs3.w and Vrs3.x.
These are distinguished by six SNPs in complete linkage dis-
equilibrium. One SNP generates a non-synonymous substitution
(serine/asparagine substitution in exon 2), which PROVEAN
analysis17 suggests is neutral. KASP marker analysis in a
collection of 482 European cultivars revealed that, unlike VRS1
and VRS5, and similar to VRS2 and VRS4, Vrs3.w and Vrs3.x

haplotypes are not wholly-associated with alternative row-types
(Fig. 3a). However, the observed allele frequencies in winter and
spring genotypes may explain the observed germplasm-
dependent appearance of row-type associations with VRS3 in
GWAS experiments7, 18 and may reflect selection for a linked
spring or winter genepool-specific character.

VRS3 does not appear to be a target of directional selection. To
explore the wider natural diversity of VRS3, we mined an exome
capture data set from a geo-referenced panel of 86 wild and 132
locally adapted landraces (53 two-rowed and 79 six-rowed)19. We
identified a total of 64 SNPs. Of 48 exonic SNPs, 21 generated
synonymous and 27 non-synonymous substitutions. Only one
non-synonymous change occurred within a conserved functional
domain: a T>A substitution (MAF 0.92%) that resulted in a
grass-conserved asparagine to lysine substitution within the JmjC
domain that once again PROVEAN17 suggests is neutral.
Median-joining network analysis clustered the 64 SNPs into 46
haplotypes with 37 unique to wild germplasm, two to the two-
rowed, four to the six-rowed landraces and three that were mixed
(Fig. 3b). Vrs3.w and Vrs3.x haplotypes are most closely related to
network haplotypes 45 and 46, respectively. These two haplotypes
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Fig. 2 Identification of VRS3. a The refined genetic mapping interval of the vrs3 locus showing the number of recombinants between each marker. b
Conserved synteny between orthologous regions on the physical maps of rice chromosome 10 and barley chromosome 1H within the genetic mapping
interval. Rice gene models are shown in dark blue and barley in red. The yellow square represents the VRS3 gene candidate. c VRS3 gene model with
regions encoding three putative functional domains JmjN (pink), JmjC (turquoise) and C5HC2 zinc-finger (orange). The 5′ and 3′untranslated regions
are shown in pale grey. Positions of the mutant alleles are relative to the start codon (ATG). Allele colours represent the respective genetic background
of the induced mutation: turquoise (Bonus), green (Hakata 2), dark blue (Hege), red (Foma), and purple (Kristina). Types of mutation are coded
as: > non-synonymous substitution, *premature stop, FS, frameshift, SS, splice site
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derive from haplotype 7, represented by three wild accessions that
are each geo-referenced to Israel, suggesting that the cultivated
haplotypes most likely originate from Israeli wild barleys. There
was no obvious correlation between VRS3 alleles, row-type or
geography within the landraces, suggesting VRS3 has not been
subject to directional selection (Fig. 3b and Supplementary
Fig. 2).

VRS3 promotes expression of row-type transcription factors.
The available RNA-seq data (http://camel.hutton.ac.uk/
barleyGenes_JLOC2) indicated that VRS3 is expressed through-
out the developing barley plant (Supplementary Note 1 and
Supplementary Fig. 3). Using qRT-PCR, we observed a 3-fold
change in expression in Vrs3.w in very young 1 mm Bowman
spikes (triple mound stage) compared to later stages (Supple-
mentary Fig. 4a, b), suggesting an early developmental role,
although we did not observe any morphological phenotypes at
this stage. However, RNA in situ hybridization at the early lemma
primordium stage (spike length 2 mm) revealed Vrs3.w expres-
sion in developing glumes of lateral spikelets, and in the central
and distal rachis vasculature at later stages (Fig. 4a–f and Sup-
plementary Fig. 4).

To understand more about the molecular basis of VRS3
suppression of lateral spikelet fertility, we next performed highly
replicated, comparative RNA-seq (n= 8/stage/genotype) using
mRNA from inflorescences of Bowman and BW902(vrs3.f). We
chose two developmental stages: AP (spike length 4–6 mm), when
spike patterning begins to differ between genotypes; and white
anther (WA; spike length 9–11 mm), when floret primordia reach
maximal number. After removing all 107 differentially expressed
(DE) genes that lay within the genetic introgression containing
vrs3.f to avoid confounding effects, we found a total of 364 DE
genes (|log2 fold change (LFC)|≥ 0.5; adjusted P< 0.05) in at least
one of the stages, with 162 upregulated and 202 downregulated in
BW902(vrs3.f) (Fig. 4g, h, Supplementary Data 1 and Supple-
mentary Note 1). As our results suggest that VRS3 is likely a
functional orthologue of OsJMJ706, we hypothesised that VRS3
may remove the same repressive H3K9me2/3 chromatin mark as
the rice enzyme. Thus, we focused on DE genes that were
downregulated in BW902(vrs3.f). VRS1 and VRS5 were repressed
in AP (VRS1, LFC= −2.039, adjusted P= 7.01 × 10–9; VRS5,
LFC= −1.329, adjusted P= 2.36 × 10−6) and WA (VRS1,
LFC= −1.512, adjusted P= 5.56 × 10−8; VRS5, LFC= −1.204,

adjusted P= 4.56 10−5) spikes. VRS2 and VRS4 were down-
regulated in BW902(vrs3.f) AP inflorescences (VRS2,
LFC= −0.655, adjusted P= 0.019; VRS4, LFC= −0.698, adjusted
P= 2.33 × 10−5) but not in WA spikes. These observations alone
may explain why vrs3 mutants produce a partial six-rowed
phenotype (Fig. 4i–m).

VRS3 modulates gene expression. The RNA-seq data set also
revealed striking trends in sugar metabolism and hormone path-
ways consistent with the increased lateral growth in BW902(vrs3.f)
and the localisation of VRS3 expression across spike development
(Fig. 4a–g). Trehalose-6-phosphate phosphatase (T6PP, HOR-
VU6Hr1G074960) was repressed in AP spikes (LFC= −1.041;
adjusted P= 1.84 × 10−4, Supplementary Fig. 5d), as reported in
vrs4 mutants6, reflecting perturbed T6P homeostasis during
inflorescence development and growth20, 21. A bHLH transcrip-
tion factor (HORVU4Hr1G075320, LFC= −0.910, adjusted
P= 3.45 × 10−4 (AP); LFC= −1.175, adjusted P= 2.18 10−7 (WA))
with homology to maize PTF122 implicated in controlling soluble
sucrose content was also repressed. Three SWEET genes (also
known as saliva or MtN3) that encode transmembrane proteins
involved in sugar transport, were significantly DE in BW902(vrs3.
f) spikes at WA stage: HORVU5Hr1G076770 and HOR-
VU7Hr1G054710 were downregulated (LFC= −1.106, adjusted P
= 5.03 10−4 and LFC= −1.147, adjusted P= 0.004, respectively)
while HORVU3Hr1G107780 (LFC= 0.736; adjusted P= 0.002)
was upregulated. These genes participate in a wide range of the
biological processes in plants such as host-pathogen interactions,
reproductive development, senescence and abiotic stress respon-
ses23. All three are highly expressed in developing inflorescence
and caryopsis tissues in barley (http://camel.hutton.ac.uk/
barleyGenes_JLOC2). HORVU5Hr1G076770 and HOR-
VU7Hr1G054710 are orthologs of Xa13/Os8N3/OsSWEET11 in
rice, where suppressed expression causes reduced fertility or
sterility due to compromised microspore development23, 24. Here,
downregulation was associated with increased fertility of BW902
(vrs3.f) spikes; however, the SWEET gene HORVU3Hr1G107780
was significantly upregulated at the same WA stage, consistent
with the effect of SWEET genes in the rice inflorescence25. The
contrasting regulation we observe here suggests that different
SWEET genes may play different roles in determining barley
spike architecture and pollen fertility. Downregulation of
cytokinin oxidase/dehydrogenase (HvCKX) (revealed by
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qRT-PCR, Supplementary Fig. 5d), an enzyme that mediates
cytokinin degradation, is consistent with increased lateral out-
growth and grain number associated with increased cytokinin
levels5, 26. A homolog of LONELYGUY-LIKE (LOG-LIKE), a
cytokinin-activating enzyme necessary to preserve meristem

activity27, 28 was upregulated in both stages (HOR-
VU4Hr1G079860, LFC= 2.005, adjusted P= 9.78 × 10−10 (AP);
LFC= 1.920, adjusted P= 8.44 × 10−10 (WA); Supplementary
Fig. 5d), similar to observations in other cereal inflorescence
architecture mutants6, 27. Other highly upregulated genes in
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BW902(vrs3.f) were associated with increased growth (e.g.,
EIF3A29), cell proliferation (e.g., ERGIC330) and embryo devel-
opment (e.g., PPR proteins31).

We were intrigued to find stress and defence signalling to be
the only statistically enriched biological function in our DE gene
set (adjusted P= 2.69 × 10−2, Supplementary Data 1). Inspection
of the over-represented transcripts revealed multiple thionins and
peroxidases downregulated in BW902(vrs3.f) (Supplementary
Note 1). This was supported by downregulation of allene oxide
synthase 1 (AOS1,HORVU4Hr1G066270), the first enzyme in
the lipoxygenase pathway of jasmonate (JA) biosynthesis32, a
classic plant hormone involved in fertility, wounding and
defense33 and a number of jasmonate-induced proteins (JIPs34).
In rice, loss of JA biosynthesis/signalling is also associated with
extra floral meristem and floral organ formation35, potentially
relevant to the ectopic awn/lemma and floret phenotypes
observed in BW902(vrs3.f). Overall, our comparative RNA-seq
data provides two levels of interpretation: (1) VRS3 may regulate
the expression of VRS1, VRS5 and other row-type genes in order
to maintain the two-rowed spike form and, (2) DE genes in
BW902(vrs3.f) reveal roles for sugar and cytokinin pathways, but
also an intriguing link to JA signalling associated with the control
of lateral spikelet fertility.

vrs3 improves grain uniformity in six-rowed germplasm. As
only the natural alleles Vrs3.w and Vrs3.x are present within elite
cultivated six-row barley germplasm, we tested whether intro-
ducing mutant alleles of VRS3 offered any potential for crop
improvement36. We crossed BW902(vrs3.f) and BW419(int-a.1)
into the six-row cultivar Morex (vrs1.a, Int-c.a) and used diag-
nostic molecular markers to identify all allelic classes of pro-
genies. Comparing central and lateral grain sizes from lines
homozygous for six-row alleles of VRS1(vrs1.a) and VRS5(Int-c.
a), and homozygous for either wild type (Vrs3.w) or mutant VRS3
(vrs3) revealed that vrs3 offered a significant improvement in
lateral grain width and area (Fig. 5, Supplementary Note 1 and
Supplementary Fig. 6). Importantly, the lateral to central grain
size ratio significantly increased from 89 to 93% (P= 0.035,
ANOVA, n= 6 (662), n= 12(666)), improving a critical proces-
sing character.

Discussion
Our data suggest that VRS3 is a putative JMJC H3K9me2/me3
demethylase required for barley floral organ development by
regulating expression of floral development genes. Assuming this
functional assignment is correct, our observations are consistent
with a model where VRS3 maintains a locally permissive H3K9
methylation state in cells of the developing inflorescence, which
directly or indirectly facilitates transcription of the major VRS
genes that together coordinate the maintenance of lateral spikelet

sterility. Deleterious mutations, such as vrs3.f, would induce a
phenotypic response primarily by maintaining repressive chro-
matin around the major VRS genes, restricting transcription and
partially phenocopying recessive natural vrsmutations that confer
a six-row phenotype. It remains unclear why introducing vrs3
into an otherwise six-row background (vrs1.a Int-c.a) improves
the lateral to central grain size ratio. Transcriptional responses in
vrs3.f indicate that either subsequently, or co-operatively, plant
hormone balance, especially cytokinins and JA, sugar metabolism
and stress responses are involved in regulating lateral spikelet
fertility. Its putative functional role may help explain the varied
genetic and environmental penetrance of the mutant phenotype.

Methods
Germplasm and phenotyping. Germplasm is listed in Supplementary Table 2. The
vrs3 (syn= int−a) mutant allelic series was obtained from the Nordic genebank.
Bonus, Hege, Bowman, Foma, Morex and Kristina cultivars were from the JHI
Barley collection. Hakata 2 was obtained from Okayama University (accession
J807). VRS3 was genotyped across 220 spring and 262 winter European cultivars
from Cockram et al.37 and Tondelli et al.38. Two Bowman near-isogenic line alleles
for vrs3, BW419 (int-a.1, an X-ray induced mutant in Bonus*BC6) and BW902
(vrs3.f, gamma-ray-induced mutant of Hakata2* BC6) were crossed to Bowman,
Barke and Morex cultivars. F2 plants deriving from BW902*Bowman,
BW419*Bowman, BW902*Barke and BW419*Barke crosses were grown in 23 cm
pots within a polytunnel and phenotyped at four positions within the main spike
(top, middle and two lowest spikelet nodes) for row-type, grain fill, awn length,
additional florets and spikelets, and awned paleas. BW419*Morex and
BW902*Morex F2 plants used in row-type gene pyramiding experiments were
grown in 23 cm pots under long-day glasshouse conditions (16 h light/8 h dark, at
18 °C day and 14 °C night). Plants for SEM, in situ hybridisation, qPCR and RNA-
seq were grown in glasshouses under the same long-day conditions.

Identification of VRS3. BW419*Barke F2 individuals (n= 108) were phenotyped,
DNA extracted and genotyped using an Illumina BeadXpress SNP platform39.
Further polymorphic markers in the region were identified from B-OPA SNPs used
previously to genotype Barke and Bonus40. KASP allele-specific PCR assays (LGC
Genomics) designed to individual informative SNP’s directly from the Illumina
OPA manifest files were performed according to the manufacturer’s guidelines.
Genotyping and KASP primers are listed in the Supplementary Data 2. Map dis-
tances were calculated using JoinMap3 (Kyazma). Local conservation of synteny
between barley and rice was established using Strudel41.

Phylogenetic analysis. Reciprocal blast of the VRS3 predicted protein sequence
against the plant Phytozome database 12 identified 18 sequences from the Gra-
mineae (E score of 0.0) predicted to contain all three functional domains and
sharing at least 50% identity. BLAST of the wheat survey sequence42 identified
three orthologues on chromosomes 1A, 1B and 1D. BLAST against the barley
predicted proteins12, 13 identified a paralogue of VRS3, MLOC_53868.1, on chro-
mosome 6H. BLAST of this sequence against the wheat survey sequence42 again
identified homologous sequence on chromosome 1A and 1D; however, no reliable
sequence could be established for chromosome 1B. Protein sequences were aligned
using MUSCLE43. The BMGE algorithm44 removed 740 phylogenetically unin-
formative characters across the aligned sequences prior to phylogenetic analysis.
Phylogenetic analysis was performed in MEGA645 using the ‘maximum likelihood
nearest-neighbour interchange method’. A bootstrap consensus tree was inferred
from 1000 replicates (Supplementary Data 3).

Fig. 4 Expression analyses. a–f In situ RNA hybridization of VRS3 in two-rowed barley cv. Bowman at lemma primordium (LP) (spike length 2mm) and awn
primordium (AP) stage (spike length 5mm). a–c Longitudinal sections hybridised with antisense VRS3 probe (a) at LP stage showing VRS3 signal in the
developing glumes (gl) of the lateral spikelet (ls, in middle plane) and potential signal (*) from the glume of the adjacent central spikelet (CS) and at (b) AP
stage showing expression in the rachis (r, yellow arrowheads) and (c) at higher magnification. d–f Equivalent longitudinal sections hybridised with sense
probe. Scale bars, 100 µm (a, b), 200 µm (c, d), 50 µm (e, f). g Heat map of differentially expressed (DE) genes implicated in regulating spike development
and meristem identity. Legend indicates gene expression abundances (Z scores) across the different developmental stages AP (5mm) and white anther
(WA) (10mm) in BW902(vrs3.f) and Bowman (n= 8 bioreps per genotype). h Venn diagram showing the overlap of DE genes between Bowman (WT)
and BW902(vrs3.f) in AP (5mm) and WA (10mm) spikes. Numbers represent the DE genes genetically located outside of the vrs3.f introgression in
BW902(vrs3.f). i–m Average gene transcript levels determined by quantitative RT-PCR in Bowman WT (black) and BW902(vrs3.f) (red) in AP and WA
spikes; i VRS1; j VRS2; k VRS3; l VRS4; m VRS5. HvActin was used for normalization. x-axis shows the inflorescence developmental stages in which the RNA-
seq experiment was performed. y-axis shows the relative expression level based on ΔCt (cycle threshold) calculation. Mean± S.E of three biological
replicates is shown. P values were calculated based on Student’s t tests (two-tailed)
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VRS3 sequence diversity. Reciprocal BLAST of rice LOC_Os10g42690 against the
cv. Morex barley genome sequence identified Morex contig 566912, 13 as containing
the putative barley orthologue. Amplicons, generated with overlapping primer
pairs were designed to amplify a region of 5815 bases from upstream of the
predicted start and downstream of the predicted stop (Supplementary Table 3),
were Sanger sequenced using Big-Dye v3.1 (Applied Biosystems) across 22 cultivars
representative of two-rowed and six-rowed, winter and spring haplotypes in the
region of VRS3 (Supplementary Data 4). Vrs3.w or Vrs3.x alleles were dis-
criminated in a further 220 spring and 255 winter cultivars using a single diagnostic
KASP allele-specific PCR (primers in Supplementary Data 2). Sequence variation in
VRS3 in landraces and wild barley was obtained from the exome capture sequence
data described19. Accession geo-reference locations are provided in Supplementary
Data 5 and Vrs3 haplotypes in Supplementary Data 6. A median-joining tree was
constructed using PopArt network software (http://popart.otago.ac.nze).

Gene expression analyses. For RNA-seq, following germination in 96-well trays,
Bowman WT and BW902(vrs3.f) seedlings were transferred to 8.89 cm pots
arranged in a randomised block design. For each biological rep (n= 8, providing
>98% statistical power46), 20–25 AP stage (AP, 5 mm± 1 mm spike length) or
10–15 spikes at WA stage (10 mm± 1 mm spike length) were collected off the main
shoot within a constant 3 h window in the light period. Total RNA was extracted
with TRIzol Reagent (Invitrogen), treated with DNase (QIAGEN) and purified
with RNeasy columns (QIAGEN). Stranded RNAseq libraries were prepared with
the NEXTflex™ Rapid Directional RNA-Seq Kit with NEXTflex™ DNA Barcodes
(Bioo Scientific, manual v 14.09) using 1 µg total RNA of each sample to generate a
library using NEXTflex™ beads. Libraries were normalised, pooled (6 libraries per
lane of sequencing) at equimolar concentrations and diluted to 10 pM. Pools were
clustered with the HiSeq Rapid PE Cluster Kit v2 (Illumina) and sequenced on a
HiSeq2500 (Illumina). Each library pool was run in a single lane as paired-end 2 ×
150 bp. Reads were demultiplexed using CASAVA 1.8, allowing a one base-pair

mismatch. For data analysis (Supplementary Fig. 7), raw data were checked for
quality using FASTQC 0.11.3 and adaptors trimmed using Trimmomatic 0.3047.
Transcript abundance was calculated using Salmon 0.7.248, based on the barley
transcript reference12, 13. Estimated read counts were summarised to gene level
using tximport 1.2.049. Consistently lowly expressed genes were filtered out and the
trimmed mean of M-values method (TMM) applied to normalise read counts using
edgeR 3.16.550 and then converted to log2-read-counts-per-million (log2CPM).
Relationships between mean and variance were estimated and weights for variance
adjustments generated using the voom function51 in limma 3.30.952. Using a
general linear model with genotype and developmental stages as factors, contrast
groups identified DE genes52 For the contrast groups, an empirical bayes moder-
ated t test was used to calculate the P values, these were further adjusted to account
for multiple testing53 (Supplementary Note). Gene Ontology enrichment analysis
on DE genes (Supplementary Note) identified over-represented GO terms using
GOEAST54. Selected transcripts were validated by qRT-PCR in independent
experiments (Supplementary Fig. 5 and Supplementary Note).

For qRT-PCR, RNA was extracted from developing inflorescences (n= 3, 24
plants per rep, according to MIQE guidelines for sample replication55) at 1 mm,
2–3mm and 10mm length using an RNAeasy Plant Mini Kit (QIAGEN). cDNA
was synthesised from 2 μg of RNA using Ready-To-Go You-Prime First-Strand
Beads (GE Healthcare Lifesciences). qRT-PCR reactions were run in triplicate
(technical reps) on a StepOnePlus (Applied Biosystems) with Universal Probe
Library (Roche) hydrolysis probes. Expression was normalised to the ACT2 or PDF2
reference using the 2−ΔCT method. Significant differences were calculated using a
Student’s t-test (two-tailed). qPCR primers are listed in Supplementary Table 4 and
parameters in Supplementary Note. The 16 tissue RNA-seq Expression Atlas
(FPKM values) is available in the BarleyGenes databaseb (Supplementary Note).

SEM and in situ hybridisation. For SEM samples, spikes at AP stage were pre-
pared and imaged as described56. Spikes collected at early lemma and AP stages
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Fig. 5 Impact of vrs3 on grain size and uniformity in the six-rowed spike. a A typical six-rowed barley spikelet triplet (vrs1.a, Int-c.a, Vrs3) showing the central
grain (Cen) flanked by two lateral grain (Lat). Scale bar, 1 cm. b, c Six-rowed barley spikes from b the current commercial six-rowed genotype model: vrs1.a,
Int-c.a, Vrs3.w (662) and c with the introduction of vrs3: vrs1.a, Int-c.a, vrs3 (666), respectively; Scale bar, 1 cm. d, e Distributions of d central and e lateral
grain width fractions within the 662 genotypes. f, g Distributions of f central and g lateral grain width fractions within the 666 genotypes. h–j comparison of
the mean grain width, grain area and lateral to central grain area ratio between the 662 (n= 6) and 666 (n= 13) genotype combinations; black bars: 662
genotype, grey bars: 666 genotype. Error bars are± S.E.D
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were prepared for in situ hybridization according to Goodall et al.57. To synthesise
the probe template, 300 bp from the 3’UTR of VRS3 cDNA was cloned into the
pCR4-TOPO vector (Invitrogen). Antisense and sense probes were synthesised
using primers incorporating the T7 polymerase binding site at the 5′ end (Sup-
plementary Table 5), as described58. Hybridisation occurred overnight at 52 °C
with 50 ng/µl DIG-labelled RNA probe in hybridisation buffer. Post-hybridisation
washes and immunodetection was performed as described previously58, 59, except
slides were incubated for 90 min rather than 4 h with diluted (1:1250) antibody
conjugate (anti-DIG-AP, Roche) in BSA wash solution, and then washed three
times (15 min each) in BSA wash solution. Sections were photographed under
bright-field using the AxioCamHR setup (Zeiss). Empty slide background was
colour matched in Photoshop (Adobe) to compare between separate slides.

Row-type gene pyramids. Allelic combinations at VRS1, VRS5 and VRS3 were
established using KASP allele-specific PCR (LGC Genomics) (Supplementary
Data 2) of seedling leaf DNA from 600 BW419*Morex and BW902*Morex F2
plants. 300 F2 plants from each cross were grown to provide a 99% chance of at
least one individual from each population having the treble homozygous six-rowed
allele combination and provide adequate replication. Lines homozygous for six-row
alleles at VRS1 (vrs1.a) and VRS5 (Int-c.a), and vrs3 (mutant allele, n= 12) or Vrs3
(WT allele, n = 6) were selected. Following collection of main spikes at Zadoks
growth stage 92 (hard caryopsis), grain number and size for central and lateral
grain was determined using a MARVIN grain size analyser (GT Sensorik).
ANOVA analysis in Genstat (VSN International) tested for significant differences
between vrs1.a, Int-c.a, Vrs3.w and vrs1.a, Int-c.a, vrs3 allelic combinations;
assumptions for normality and equal variances were confirmed by residuals.
Additional details for field trials are provided in the Supplementary Note.

Data availability. VRS3 alleles in cultivated germplasm and vrs3-induced mutant
allele sequences are included in Supplementary Data 4 and Supplementary Table 6.
RNA-Seq data sets are available from European Nucleotide Archive (ENA), http://
www.ebi.ac.uk/ena, under project code PRJEB19243. Exome Capture sequence
datasets are published19. All the genotypic data described can be requested from
the corresponding authors. The authors declare that all the other data supporting
the findings of this study are available from the corresponding authors upon request.
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